Ideal Structure of the Algebra of Bounded Operators Acting on a Banach Space

نویسندگان

  • TOMASZ KANIA
  • N. J. LAUSTSEN
چکیده

We construct a Banach space Z such that the lattice of closed two-sided ideals of the Banach algebra B(Z) of bounded operators on Z is as follows: {0} ⊂ K (Z) ⊂ E (Z) ⊂ ⊂ M1 M2 ⊂ ⊂ We then determine which kinds of approximate identities (bounded/left/right), if any, each of the four non-trivial closed ideals of B(Z) contains, and we show that the maximal ideal M1 is generated as a left ideal by two operators, but not by a single operator, thus answering a question left open in our collaboration with Dales, Kochanek and Koszmider (Studia Math. 2013). In contrast, the other maximal ideal M2 is not nitely generated as a left ideal. The Banach space Z is the direct sum of Argyros and Haydon's Banach space XAH which has very few operators and a certain subspace Y of XAH. The key property of Y is that every bounded operator from Y into XAH is the sum of a scalar multiple of the inclusion map and a compact operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hereditary properties of amenability modulo an ideal of Banach algebras

In this paper we investigate some hereditary properties of amenability modulo an ideal of Banach algebras. We show that if $(e_alpha)_alpha$ is a bounded approximate identity modulo I of a Banach algebra A and X is a neo-unital modulo I, then $(e_alpha)_alpha$ is a bounded approximate identity for X. Moreover we show that amenability modulo an ideal of a Banach algebra A can be only considered ...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Cohomology of aff(1|1) acting on the space of bilinear differential operators on the superspace IR1|1

We consider the aff(1)-module structure on the spaces of bilinear differential operators acting on the spaces of weighted densities. We compute the first differential cohomology of the Lie superalgebra aff(1) with coefficients in space Dλ,ν;µ of bilinear differential operators acting on weighted densities. We study also the super analogue of this problem getting the same results.

متن کامل

Dynamical System and Semi-Hereditarily Hypercyclic Property

In this paper we give conditions for a tuple of commutative bounded linear operators which holds in the property of the Hypercyclicity Criterion. We characterize topological transitivity and semi-hereiditarily of a dynamical system given  by an n-tuple of operators acting on a separable infinite dimensional Banach space .

متن کامل

ON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS

In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015